Journal of Oral Implantology

MAXILLARY RIDGE AUGMENTATION WITH CUSTOM-MADE CAD/CAM SCAFFOLDS. A 1-YEAR PROSPECTIVE STUDY ON 10 PATIENTS.

--Manuscript Draft--

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>AAID-JOI-D-12-00122R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>MAXILLARY RIDGE AUGMENTATION WITH CUSTOM-MADE CAD/CAM SCAFFOLDS. A 1-YEAR PROSPECTIVE STUDY ON 10 PATIENTS.</td>
</tr>
<tr>
<td>Short Title:</td>
<td>Custom-made scaffolds for ridge augmentation.</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Clinical</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Alveolar ridge augmentation; computed tomography (CT); computer-aided-design/computer-aided-manufacturing (CAD/CAM); custom-made scaffolds</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Francesco Mangano, DDS
University of Varese
Gravedona, Como ITALY |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | University of Varese |
| Corresponding Author's Secondary Institution: | |
| First Author: | Francesco Mangano, DDS |
| First Author Secondary Information: | |
| Order of Authors: | Francesco Mangano, DDS
Aldo Macchi, MD, DDS
Jamil Awad Shibli, DDS, PhD
Giuseppe Luongo, MD, DDS
Giovanna Iezzi, DDS
Adriano Piattelli, MD, DDS
Alberto Caprioglio, MD, DDS
Carlo Mangano, MD, DDS |
| Order of Authors Secondary Information: | |
| Abstract: | Several procedures have been proposed to achieve maxillary ridge augmentation. These require bone replacement materials to be manually cut, shaped and formed at the time of implantation, resulting in an expensive and time-consuming process. In the present study, we describe a technique for the design and fabrication of custom-made scaffolds for maxillary ridge augmentation, using three-dimensional (3D) computed tomography (CT) and computer-aided-design/computer-aided-manufacturing (CAD/CAM). CT images of the atrophic maxillary ridge of ten patients were acquired and modified into 3D reconstruction models. These models were transferred as stereolithographic files (STL) to a CAD program, where a virtual 3D reconstruction of the alveolar ridge was generated, to produce anatomically-shaped, custom-made scaffolds. CAM software generated a set of tool-paths for manufacture by a computer-numerical-control (CNC) milling machine into the exact shape of the reconstruction, starting from porous hydroxyapatite (HA) blocks. The custom-made scaffolds were of satisfactory size, shape, and appearance, matched the defect area, suited the surgeon's requirements and were easily implanted during surgery. This helped to reduce the time for the surgery, and contributed to the good healing of the defects. |
MAXILLARY RIDGE AUGMENTATION WITH CUSTOM-MADE CAD/CAM SCAFFOLDS.
A 1-YEAR PROSPECTIVE STUDY ON 10 PATIENTS.

Francesco Mangano, DDS; Aldo Macchi, MD, DDS; Jamil Awad Shibli, DDS, PhD; Giuseppe Luongo, MD, DDS; Giovanna Iezzi, DDS; Adriano Piattelli, MD, DDS; Alberto Caprioglio, MD, DDS; Carlo Mangano, MD, DDS

1 Dental School, University of Varese, Italy
2 Dental School, University of Guarulhos, Sao Paulo, Brazil
3 Dental School, University of Naples, Italy
4 Dental School, University of Chieti, Italy

Corresponding author:
Francesco Mangano, DDS
Piazza Trento 4, 22015, Gravedona (Como) Italy
Tel +39-0344-85524 Fax +39-0344-530251
email francescomangano1@mclink.net

Short title: Custom-made scaffolds for ridge augmentation

Disclosure: No grants, equipment, or other sources of support were provided for this work
ABSTRACT

Several procedures have been proposed to achieve maxillary ridge augmentation. These require bone replacement materials to be manually cut, shaped and formed at the time of implantation, resulting in an expensive and time-consuming process. In the present study, we describe a technique for the design and fabrication of custom-made scaffolds for maxillary ridge augmentation, using three-dimensional (3D) computed tomography (CT) and computer-aided-design/computer-aided-manufacturing (CAD/CAM). CT images of the atrophic maxillary ridge of ten patients were acquired and modified into 3D reconstruction models. These models were transferred as stereolithographic files (STL) to a CAD program, where a virtual 3D reconstruction of the alveolar ridge was generated, to produce anatomically-shaped, custom-made scaffolds. CAM software generated a set of tool-paths for manufacture by a computer-numerical-control (CNC) milling machine into the exact shape of the reconstruction, starting from porous hydroxyapatite (HA) blocks. The custom-made scaffolds were of satisfactory size, shape, and appearance, matched the defect area, suited the surgeon’s requirements and were easily implanted during surgery. This helped to reduce the time for the surgery, and contributed to the good healing of the defects.

KEYWORDS

Alveolar ridge augmentation, computed tomography (CT), computer-aided-design/computer-aided-manufacturing (CAD/CAM), custom-made scaffolds
INTRODUCTION

The rehabilitation of partially and totally edentulous maxilla with implant-supported prostheses has become common practice in the last few decades, with reliable long-term results. However, alveolar bone defects of varying sizes occur as a result of advanced periodontitis, jawbone cysts, tooth extractions and dental trauma. In such situations, due to the major changes in both vertical and horizontal bone dimensions, the placement of dental implants in the correct position may be extremely complicated or impossible. In the posterior maxilla, sinus grafting is a well-established technique to achieve bone regeneration, with successful long-term follow-up results. As an alternative, short implants are being increasingly used in extremely resorbed posterior regions. Recent studies in fact show that short implants can reach satisfactory clinical levels of reliability and survival. In the anterior maxilla, however, the ideal approach would be to augment bone vertically and horizontally in a predictably successful way, and the first therapeutic option to provide better functional and esthetic results is alveolar ridge augmentation, that simultaneously provides better implant support and decreased inter-arch length. Several techniques have been proposed to achieve alveolar ridge augmentation, with different success rates, including onlay block bone grafting, interpositional grafts, guided bone regeneration, ridge split technique/ridge expansion and distraction osteogenesis. Although it has been shown that it is possible to augment bone vertically and horizontally with all these different techniques, the number of complications and failures of these augmentation procedures is still too high to recommend their widespread use. Over the years, autogenous bone has remained the gold standard for alveolar ridge augmentation. However, surgical invasion of the donor site and quantitative limitations of the extracted bone may cause clinical problems. In addition, the resorption of autogenous bone after augmentation is an undesirable factor which may compromise long-term stability. In implant dentistry, priority should be given to those interventions that are less invasive, involve less risk of complications, and reach their goal within the shortest timeframe. Nowadays, a variety of bone substitutes are available for alveolar ridge augmentation. The characteristics of ideal bone substitutes are as follows: they should show biocompatibility, have excellent osteoconductive properties and appropriate strength, and they should be able to be formed into a suitable shape easily and to ultimately replace the bone completely within a short period. Prepared allogeneic
or xenogenic materials have been successfully used for ridge augmentation and more recently biologically inert alloplastic scaffolds shown to offer a reasonable alternative. Porous hydroxyapatite (HA) ceramics have been used extensively as substitutes in bone grafts, because the crystalline phase of natural bone is HA. For optimal bone regeneration, scaffolds need to fit anatomically into the requisite bone defects and, ideally, promote cell growth and differentiation. For this reason, there is a clinical need for anatomically-shaped biomaterials to repair voids of bone loss in bone defects. Current implant procedures typically require bone replacement materials to be manually cut, shaped and formed at the time of implantation, resulting in an expensive and time-consuming process. Moreover, it is difficult to shape the graft into an appropriate configuration. This limitation can compromise the mechanical stability and the biological properties of the scaffold. Computer-aided design/computer-aided manufacturing (CAD/CAM) technologies have recently opened new frontiers in biomedical applications.

The aim of this study was to demonstrate how new CAD/CAM technologies allow the fabrication of anatomically-shaped, custom-made porous HA scaffolds, which can be predictably used for alveolar ridge augmentation.

MATERIALS AND METHODS

Patient selection

Patients were recruited and treated in two different clinical centers, in the Department of Oral Surgery of the University of Varese, Italy, and in the Department of Oral and Maxillofacial Surgery of the University of Guarulhos, Sao Paulo, Brazil. Between January 2007 and January 2010, any patient with partial edentulism in the anterior/posterior maxilla, having a residual bone height between 5 and 7mm and a thickness of at least 5mm measured on computed tomography (CT) scans, requiring vertical and horizontal bone augmentation to allow placement of dental implants, was eligible for inclusion in this trial. Exclusion criteria consisted of: (1) irradiation, chemotherapy or immunosuppressive therapy over the past 5 years, (2) HIV and hepatitis B or C, (3) treatment with intravenous amino-bisphosphonates, (4) uncontrolled diabetes, (5) poor oral hygiene and motivation, (6) active periodontal infections, (7) heavy smoking habit (more than 15 cigarettes/day).
The study protocol was explained to each subject, and signed informed consent was obtained. The protocol was approved by the Ethical Committees of the University of Varese (Italy) and University of Guarulhos, Sao Paulo (Brazil), and the study was performed according to the principles outlined in the World’s Medical Association’s Declaration of Helsinki on experimentation involving human subjects, as revised in 2008.

Preoperative Work-Up

A complete examination of the oral hard and soft tissues was carried out for each patient. Preoperative work-ups included an assessment of the edentulous ridge using casts and diagnostic wax-up. Panoramic radiographs formed the basis for the primary investigation. Then, computed tomography (CT) scans were acquired using a modern cone-beam scanner.

CAD/CAM procedures

CAD/CAM alveolar ridge reconstruction involved three steps: (1) the virtual planning and design of the custom-made scaffold, (2) the manufacture of the custom-made scaffold, and (3) reconstructive surgery.

Virtual planning and design of the custom-made scaffold

CT datasets of the maxillary ridges were loaded in the DICOM (Digital Imaging and Communications in Medicine) format into specific three-dimensional (3D) reconstruction software (Mimics®, Materialise, Leuven, Belgium). The hard tissue threshold was selected so that only bone was reconstructed from the slices. With this software, it was possible to perform an accurate and complete 3D reconstruction of the maxilla. This reconstruction was then transferred as a stereolithographic file (STL) to a 3D CAD program (Rhinoceros®, Robert McNeel & Associates, Seattle, WA, USA). The software permitted the operator to virtually reconstruct the alveolar ridge defect, drawing an anatomically-shaped, custom-made scaffold (Fig. 1).

Manufacture of the custom-made scaffold

The 3D geometry of the anatomically-shaped, custom-made scaffold was imported into proprietary CAM software, used to generate a set of tool-paths for fabrication by a proprietary computer-numerical-control (CNC) milling machine. A porous HA block (Biocoral®, Biocoral Inc, Le Garenne Colombes, France) was placed in the milling machine
and milled into the exact shape of the 3D template. In this way, an anatomically-shaped, custom-made synthetic HA scaffold was manufactured. The scaffolds were sterilized before surgery.

Reconstructive surgery

Local anaesthesia was obtained by infiltrating articaine (4% containing 1:100,000 adrenaline). Wide exposure of the atrophic edentulous ridge was achieved with a crestal incision and lateral releases. A widely mobilized mucoperiosteal flap was elevated, depicting the bone defect (Fig. 2-3). The recipient site was weakened with multiple micro-holes to enhance bleeding from the trabecular bone. The clinically sized, anatomically shaped custom-made porous HA scaffold was placed in position strictly overlapping the underlying alveolar crest and fitted securely to the residual bone (Fig. 4). Rigid fixation of the scaffold was obtained by means of a titanium mini-screw (Ningbo Cibei Medical Treatment Appliance Co Ltd., Ningbo, China) in a transversal axis (buccal to apical). The greatest surgical care was taken to obtain a tension-free suture (SupramidR, Leader, Milan, Italy) above the scaffold, to avoid ischemic damage to the mucosa and suture dehiscence. All patients received oral antibiotics, 2g each day for 6 days (AugmentinR, Glaxo- Smithkline Beecham, Brentford, UK). Postoperative pain was controlled by administering 100 mg nimesulide (AulinR, Roche Pharmaceutical, Basel, Switzerland) every 12 hours for 2 days, and detailed instructions about oral hygiene were given, with mouthrinses with 0.12% chlorhexidine (ChlorexidineR, OralB, Boston, MA, USA) administered twice a day for 14 days without mechanical cleaning of the surgical areas. Sutures were removed 14 days after surgery. No removable prosthesis was allowed for 6 months. Patients were enrolled in an oral hygiene programme with recall visits every 4 months, for the entire duration of the study.

Implant placement and biopsies retrieval

Eight months after augmentation, under local anaesthesia, mini-screws were removed, and the implants were inserted. The choice of the implant type, diameter and length was left to the surgeon according to the anatomical limitations and the treatment plan. Implants were placed at the bone crest level and were submerged for a healing period of 4 months. Bone core biopsies were retrieved using a 2.0 x10 mm trephine bur under sterile saline solution irrigation, in all patients. Bone cores (approximately 2 x 6mm) were retrieved with a trephine bur via a transcristal path at a minimum distance of 5 mm from the nearest
teeth. The bone core biopsies were immediately stored in 10% buffered formalin and were subsequently processed (Precise 1 Automated System®, Assing, Rome, Italy) to obtain thin ground sections. The specimens were dehydrated in an ascending series of alcohol rinses and embedded in glycol methacrylate resin (Technovit® 7200 VLC, Heraeus Kulzer GmbH & Co., Wehrheim, Germany). After polymerization, the specimens were sectioned lengthwise along the longer axis, using a high-precision diamond disk saw, to about 150 microns and ground down to about 30 microns. Two slides were obtained from each specimen. The slides were stained with basic fuchsin and toluidine blue.

Histological and histomorphometric evaluation
Histomorphometry of newly formed bone, marrow spaces and residual graft material were carried out on each specimen using a light microscope at low magnification (25x; Laborlux S®, Ernst Leitz GmbH, Wetzlar, Germany) connected to a high-resolution video camera (3CCD®, JVC KY-F55B, JVC, Yokohama, Japan) and interfaced to a monitor and personal computer (Intel Pentium III 1200 MMX®, Intel Corporation, Santa Clara, CA, USA). This optical system was linked to a digitizing pad (MatrixVision GmbH®, Oppenweiler, Germany) and a histometry software package with image-capturing capabilities (Image-Pro Plus Version 4.5®, Media Cybernetics Inc, Silver Spring, MD, USA). The values for marrow spaces/soft tissues, residual graft material and newly formed bone were recorded exactly 1mm from the pre-existing bone and the mean percentage values were calculated.

Prosthetic procedure
Four months later, the implants were exposed, abutments were placed and implant-supported acrylic resin temporary fixed restorations were cemented with a temporary cement (Temp-Bond®, Kerr, Orange, CA, USA). The placement of the definitive prosthetic restorations was performed on an individual basis, after soft tissue maturation, at least 3 months after implant placement. These restorations were carefully evaluated for proper occlusion protrusion and laterotrusion were assessed on the articulator and intraorally.

Clinical, Radiographic and Prosthetic Evaluation
After the bone reconstruction, patients were enrolled in a programme with recall visits every 4 months, for the entire duration of the study. Any complications before implant placement (failure of the augmentation procedure due to dehiscence or infection) was registered. One year after implant placement, the following clinical parameters were
investigated, for each implant: presence/absence of pain, suppuration or exudation; presence/absence of implant mobility, tested manually using the handles of two dental mirrors. In addition, panoramic and intraoral periapical radiographs were taken using an alignment system with a rigid film-object x-ray source coupled to a beam-aiming device to achieve reproducible exposure geometry. Finally, prosthesis function was tested. Static and dynamic occlusion was evaluated, using standard occluding papers. The evaluation of implant survival and success was performed according to the following clinical and radiographic parameters. Implants were divided into survived and failed categories. A survived implant was still functional at the end of the study, after 1 year of functional loading. Implant failures included implants presenting pain on function, suppuration, or clinical mobility and were removed. The conditions for which implant removal could be indicated included failure of osseointegration or infection, recurrent peri-implantitis, or implant loss caused by mechanical overload. To achieve implant success, the following clinical and radiographic success criteria had to be fulfilled: absence of pain on function; absence of suppuration or exudation; absence of clinically detectable implant mobility; absence of continuous peri-implant radiolucency and absence of prosthetic complications.

RESULTS

A total of 10 patients (5 males and 5 females, aged between 52 and 66 years, mean age 56.5 years) were considered eligible and were enrolled in this study. Patients were recruited and subjected to bone augmentation from January 2007 to January 2010. In all patients, the anatomically-shaped, custom-made scaffolds matched the shape of the bone defects well and were easily implanted during surgery. This matching of the shape helped to reduce the operation time. In two patients, the custom-made scaffolds broke at the placement of titanium mini-screws for rigid fixation. This intra-operative event was considered a minor complication. In fact, the broken scaffolds were placed in position again, secured with the help of mini-screws, and a good fit was obtained sutures were inserted and no other complication or failure of the augmentation procedure was registered in these patients. The 8-month post-operative healing period was uneventful for nine
patients; one patient experienced dehiscence of the custom-made scaffold, 2 months after the reconstructive surgery. This dehiscence forced the surgeon to raise a mucoperiosteal flap and expose the most coronal part of the graft. This was removed with a piezoelectric device, the graft surface was carefully cleaned and sutures were inserted. No other complications were registered for this patient. After the healing period newly formed, well-integrated bone was observed in all patients, filling the defects (Fig. 5; Tab. 1). Representative examples of the histological sections are illustrated in Fig. 6 a-c. The specimens consisted of newly formed trabecular bone and biomaterial, mainly in the central portion (Fig. 6a). The new bone was in strict contact with the residual material. Wide osteocyte lacunae in the vicinity of and at close contact with the graft material, and osteoid matrix undergoing mineralization were observed. New bone formation was also seen inside the residual particles of HA (Fig. 6b) with newly formed osteoid matrix undergoing mineralization (Fig. 6c). From the histomorphometric measurements of bone cores retrieved 8 months after augmentation, the mean percentages of new bone, biomaterial and marrow spaces were 34.9% (± 4.2), 26.3% (± 2.8) and 38.8% (± 4.7), respectively. The new bone was clinically available to allow a correct implant placement. In total, 10 implants were positioned. Four implants were inserted in the posterior maxilla and 6 implants in the anterior maxilla. All patients were treated according to the allocated interventions, no drop-out, exclusion or deviation from the protocol occurred up to 1 year after loading. The prosthetic restorations comprised 10 single crowns (SCs). The last final prosthesis was delivered in March 2011. At the end of the study, no implants were lost and all implants were still in function, giving an overall survival rate of 100% (Fig. 7-8). None of the implants caused pain, suppuration or exudation or were clinically mobile. No implants showed continuous peri-implant radiolucency and no prosthetic complications were reported.

DISCUSSION

Alveolar ridge augmentation is often needed for patients with extensive horizontal and vertical ridge resorption, in order to perform esthetic and prosthetic rehabilitation with dental implants. Strategies used to overcome alveolar ridge atrophy include various techniques and materials developed to increase bone volume, including onlay/inlay bone
grafting 5-7, guided bone regeneration 8,9, ridge split technique/ridge expansion 10 and distraction osteogenesis 9. Over the years, autogenous bone has remained the gold standard for maxillofacial reconstruction 2,5,7,11,12. However, autogenous bone transplants have limitations 12-14. These include the requirement for additional surgery for harvesting, the availability of grafts of sufficient size and shape and the risk of donor site morbidity, which may include fracture, long-standing pain, nerve damage and infection 12-14. In addition, one of the most unfavorable consequences with autogenous bone is a tendency towards graft resorption, which seems to be more prevalent with endochondral bone onlay grafts, such as those from the iliac crest, when not in function with implant prostheses 12-14.

A variety of bone substitutes, such as allogeneic, xenogenic and synthetic materials, as well as combinations of these are currently available for ridge augmentation 7,15-18. An ideal bone substitute should be able to regenerate complex 3D anatomical defects, while possessing mechanical properties similar to the native structures, allowing for function and load bearing; it should be biocompatible and, ideally, bioresorbable; it should contain continuous internal porosity for proper tissue formation, and permit nutrient and waste exchange. Lastly, it should encourage appropriate cell differentiation through either soluble or insoluble factor signalling and/or allow for delivery of pluripotent cell types, such as mesenchymal stem cells 15-18. Surgeons are always searching for improved techniques for reconstruction. Until now, surgeons have estimated the size and shape of a bone graft through pre-operative planning, using plain radiographs and deciding the final shape and manually cutting a bone graft into shape during the operation 19-21. With this complex and time-consuming approach, the size and shape of conventional bone grafts could be rather inaccurate, depending heavily upon each surgeon’s level of skill, and could result in unstable clinical outcomes 19-21. Now digital CT images combined with CAD/CAM techniques can be used as tools to directly produce customized devices in a biocompatible scaffold, providing a valuable alternative to bone replacement based on autograft procedures 19-21. CAD/CAM technologies have started a new age in dentistry 19-28. The development of CAD/CAM softwares, implemented in radiology procedures, and the easy acquisition and transfer of DICOM data allows the surgeon to analyze the patient by performing 3D measurements, and to manipulate deformed or missing anatomy by segmentation and insertion of unaltered or ideal skeletal constructs 19-28. CAD/CAM technologies can be indirectly or directly applied in the field of maxillofacial bone reconstruction to improve the precision of reconstruction. The indirect method consists of printing CT scan data to produce a 3D stereolithographic model of the maxilla/mandible,
on which the graft material can be manually shaped pre-operatively. Although this method is currently used and reduces operative time at surgery, the shaping precision is limited because bone deformities are printed together with healthy bone, so that it is difficult to recompose the original anatomy. The manually bent material can cause positioning bias, because only low precision may be gained if no system exists to transfer the virtual planning into the surgical environment, and the procedure is time-consuming. Owing to recent improvements in computer technology combined with advanced 3D cutting machinery, however, it is now possible to directly cut a block of bone substitute into the most appropriate shape that has been pre-operatively designed using 3D computed simulation. This technique, along with the use of recently developed bone substitutes, such as porous hydroxyapatite, which has excellent osteoconductivity and mechanical properties suitable for machine-cutting, make it possible to pre-operatively cut the bone graft into a highly accurate anatomically-shaped, custom-made scaffold. In the present study, a new protocol for computer-assisted surgery is introduced. This protocol can be divided into four phases: (1) the data acquisition phase, which includes CT scan of the patient; (2) the planning phase, which includes the importing of CT data into a software program for virtual planning and design of the anatomically-shaped, custom-made scaffold; (3) the manufacture of the custom-made scaffold, using CAD/CAM technology and proprietary CNC milling machine; (4) and the surgical phase, which includes utilizing CAD/CAM-derived scaffold for alveolar ridge augmentation of the maxilla. In this 1-year prospective study, the custom-made scaffolds were of satisfactory size, shape, and appearance, matched the defect area, suited the surgeon’s requirements and were easily implanted during surgery. This helped to reduce the time for the surgery, and contributed to the good healing of the defects. In two patients, the custom-made scaffolds broke at the placement of titanium mini-screws for rigid fixation, however, these were considered minor complications as the broken scaffolds were easily placed and secured in position again. A good fit was obtained and no other complications were registered. After 8 months, well-formed bone was clinically available to allow a correct implant placement. The protocol presented in this paper offers several benefits. The virtual environment permits ideal preoperative planning. Intraoperative time is not consumed by approximately and repeatedly modelling the scaffold to the native maxilla (as in conventional procedures). In fact, the utilized CNC milling process was highly accurate in ten patients, without the need for intraoperative correction. The approach offered precise, anatomically fitting scaffolds, with the benefit of increased stability and reduced operative time. Another benefit of this
technique is the accurate reproduction of the patient’s maxillary contour, reducing the quantity of graft material that is required for conventional bone augmentation techniques. Conventional augmentation procedures often require more graft material, if an accurate pre-operative planning is absent \(^{24,26}\). The protocol introduced in this study has some limitations. The first is dimensional, and is related to the maximum size of the customized scaffold (12 mm height x 10 mm width). In fact, to obtain favorable reconstructive results, the bone grafting procedure needs three fundamental requisites: a suitable vascular support, a valid interface between graft and the osteogenetic cell lines, and the mechanical stability of the graft \(^{5-18,27-29}\). Because the osteoblasts require high oxygen tension for bone matrix production, the higher the permeability of the graft to the vascular network the more effective is the new bone formation \(^{5-18,27-29}\). A complete vascular invasion of the scaffold has to be considered an important pre-requisite for successful bone regeneration \(^{5-18,27-29}\). If the scaffold is too big, vascular invasion can be poor, and this could finally jeopardize the healing process \(^{27-29}\). The second is related to the presence of metallic restorations next to the edentulous area: in fact, the presence of artifacts may complicate the CAD process, and the custom-made scaffold design. Third, the scaffold is designed for placement in the defect area and not to be in contact with the residual roots. In particular, the scaffold is designed to have a distance of at least 2 mm from the adjacent teeth (residual roots). This distance is decided during the CAD process; however, the presence of narrow spaces and partial root exposure may represent a limitation of this technique. In these cases, in fact, clinicians may have difficulties to avoid contacts between the scaffold and the residual roots. Calcium phosphate prostheses made from porous HA have been widely used for hard tissue repair and augmentation in different clinical settings, because of their good biocompatibility and osteoconductivity \(^{21,26,29}\). They have appropriate porosity for the diffusion of nutrients and the invasion of vascularity from a surrounding tissue, and appropriate surface chemistry to allow cells to adhere and express the osteogenic phenotype. In addition, porous HA possess appropriate mechanical strength, they are able to form a suitable shape easily and to ultimately replace the bone completely within a short period \(^{21,26,29}\). Fabrication of bone replacement materials and scaffolds for tissue engineering applications benefits significantly from manufacturing techniques that control, precisely, the scaffold architecture, both internally and externally \(^{21}\). In the present study, a limited number of patients were treated, with a short follow-up time and further studies will be necessary to verify these results. However, this study represents the first step in the development of a wider experimental protocol for alveolar ridge augmentation using
CAD/CAM technology and porous hydroxyapatite scaffolds. We have presented a new method for the manufacture of anatomically-shaped, custom-made scaffolds for ridge augmentation, which improves the precision and efficiency of maxillary reconstruction. Digital technology is advancing rapidly in dentistry. Computers are making previously manual tasks easier, faster, cheaper and more predictable. This new protocol for alveolar ridge augmentation using CAD/CAM to construct anatomically-shaped, custom-made scaffolds may represent a viable way to reproduce the patient’s anatomical contour, give the surgeon better procedural control, and reduce operation time.

Disclosure. The authors declare that they have no financial relationship with any commercial firm that may pose a conflict of interest for this study. No grants, equipment, or other sources of support were provided.

Aknowledgements. The authors are grateful to Rachel Sammons, Senior Lecturer, University of Birmingham, UK, for help with writing this manuscript.
REFERENCES

FIGURES LEGENDS

Fig. 1. 3D reconstruction of the maxilla. The alveolar ridge defect has been virtually reconstructed, drawing an anatomically-shaped custom-made scaffold.

Fig. 2. Clinical view of the U-shaped defect.

Fig. 3. Clinical measurement of the U-shaped defect with a periodontal probe.

Fig. 4. HA scaffold placed in position and fitted securely to the maxilla.

Fig. 5. 8-month clinical control. Newly formed and well-integrated bone was observed filling the entire defect.

Fig. 6. Representative examples of the histological sections:

(a) Newly formed trabecular bone and biomaterial, in the central portion of the specimen (12X, acid fuchsin and toluidine blue);

(b) The biomaterial is surrounded by newly formed bone, with wide osteocyte lacunae in the vicinity of and at close contact with the graft material, and osteoid matrix undergoing mineralization. New bone formation is observed inside the biomaterial too (200X, acid fuchsin and toluidine blue);

(c) Osteoid matrix undergoing mineralization inside the biomaterial (200X, acid fuchsin and toluidine blue).

Fig. 7. Radiographic control.

Fig. 8. Clinical control.
Tab. 1. Measurements of the bone defects registered with a periodontal probe before and 8 months after augmentation (in mm).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Height</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-</td>
<td>Post-</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>