The Use of ‘Bidimensional’ Brackets in Lingual Orthodontics: New Horizons in the Treatment of Adult Patients

Summary: The aim of the present report is to describe a new esthetic and inexpensive lingual technique that employs ‘bidimensional’ (2D) lingual brackets, superelastic lingual archwires, and direct bracket bonding, without a set-up. The ease of direct application of 2D lingual brackets makes it possible to achieve a good functional occlusion also in the presence of severe malocclusions, by adopting the biomechanical options offered by lingual appliances, as well as bypassing many factors that complicate conventional lingual treatment.

Keywords: lingual orthodontics, esthetics, lingual brackets

INTRODUCTION

Nowadays lingual technique is a successful approach in the orthodontic treatment of adult patients, although it is considered as one of the most difficult techniques, requiring long treatment times and often achieving less than satisfactory results. The greatest advantage of this technique over conventional fixed appliances is the superior esthetics (Nidoli et al, 1988). During our initial experience in lingual orthodontics, we used the pinless Begg bracket¹, which is self-ligating, but neither small enough, nor comfortable for lingual treatment. Furthermore, we faced many clinical problems controlling rotations, tippings and sliding mechanics. Initially, we tried to achieve a better control of rotations and tippings by employing two archwires simultaneously; subsequently, we used a slot adapter that allowed us to reduce the slot dimensions and create the moments needed for correcting rotations and tippings. More recently, in order to solve those problems, we developed a new lingual bracket with threedimensional control: the 3D N/M¹, which has proved to be more comfortable for lingual treatment, and offers superior mechanical features (Fig. 1) (Macchi et al, 2002a).

In lingual orthodontics, 1st and 3rd order tooth movements are more complicated due to the variability of the lingual tooth anatomy (Nidoli et al, 1985). Torque control is also more difficult, because of the reduced interbracket distance. Even small variations in bracket height can have a considerable effect on torque. These factors have led to the development of various indirect bracket-transfer methods, such as TARG² and CLASS³ (Alexander et al, 1982; Nidoli et al, 1984) (Fig. 2).

On the other hand, we have developed a new inexpensive lingual technique that aims to bypass many factors that complicate lingual treatment and still provides favorable results (Tagliabue et al, 2000; Macchi et al, 2002b). The aim of this report is to present the design, characteristics and clinical applications of a ‘bidimensional’ lingual bracket (no 3rd order control) that can be bonded directly to the lingual tooth surfaces and which is the keystone of the Insubria system.

¹ Forestadent, Pforzheim, Germany.
² SDS/Ormco, Orange, CA, USA.
³ Specialty Appliances, Norcross, GA, USA.
Fig. 1 Early experiences with the pinless Begg bracket (left) led to the development of the 2D bracket (bottom) and the 3D N/M bracket.

Fig. 2 The set-up procedure for bonding lingual brackets indirectly is complex and expensive.
INSUBRIA SYSTEM

The Insubria system lingual technique consists of:
- 2D lingual brackets,
- Titanol1 superelastic lingual archwires,
- light wire mechanics,
- light forces and power chains,
- direct bonding (without any need of an ideal set-up).

This type of system offers:
- excellent comfort for the patients seeking maximum esthetics,
- short treatment time,
- easy clinical management,
- reduced chair working time,
- low costs.

The Insubria system consists of a simple self-ligating lingual bracket1, which does not have a traditional rectangular slot in the base but two wings on the lingual surface to trap the archwire (Fig. 3). Since the brackets do not have slots, only 1st and 2nd order movements are possible. These wings may be opened with a Heidemann spatula, which has been previously customized by thinning the ends with a grinder, which allows the archwire to be inserted into the wing-slot, or to be removed from it (Fig. 4). Brackets are easily closed with Weingart pliers; we suggest closing only one wing at a time to reduce the risk of accidental debonding. A cotton roll should be held against the labial surfaces of the teeth to avoid any slipping of the pliers (Fig. 5). Removal of brackets at the end of orthodontic therapy is easily accomplished with lingual Weingart pliers.

Main characteristics of the 2D lingual bracket

Two types of ‘bidimensional’ lingual brackets are available: a standard medium twin, and a three-wing bracket (Figs. 6 and 7). The first type has two wings soldered to the bracket base, making it ductile enough to be opened and closed during the entire course of treatment in order to insert and trap the wire. The wire insertion is vertical, thus allowing for good control of rotations and tippings, but without any torque control (Fig. 8). The other type is a three-wing bracket that is indicated for more complex treatments, because it allows a better management of elastic chains, intermaxillary elastics, and the use of auxiliary springs for simple 3rd-order movements (Fig. 9). The common features of the two types of brackets are the base and the system that engages the wire. The base, which is highly retentive, has a thickness of 0.4 mm and is manufactured in order to allow the bracket to be positioned almost at the level of the cingulum of front teeth, this is for incisors with correct torque on the projection of the center of resistance (Figs. 10a and b).
Fig. 4 Opening brackets with a customized Heidemann spatula.

Fig. 5 Closing bracket wings with a Weingart plier.

Fig. 6 Dimensions of the 2D lingual brackets in mm.

Fig. 7 Different types of 2D lingual brackets: standard medium twin (left), and 3-wing bracket (right).
The absence of a slot in the base has made it possible to reduce the total thickness of the bracket to only 1.4 mm, which allows the archwire to be almost tangential to the lingual surfaces. In order to compensate for the different labio-lingual thickness normally present on the front teeth, particularly in the maxillary arch, a 1st order bend is usually needed between lateral and canine.

To summarize 2D lingual brackets:
- can be used for all teeth,
- allow a vertical insertion of the archwire,
- do not have a rectangular slot, which is replaced by two wings able to trap the wire,
- are self-ligating, with progressive friction, which can be regulated by pressing the wings,
- are able to engage round wires with a maximum diameter of .016"
- have a total thickness of 1.4 mm, including the base (0.4 mm) (Fig. 6),
- allow the use of power chains with a maximum thickness of 0.5 mm.

In the mandibular arch, direct bonding is performed using a universal placement gauge to mark the desired height from the incisal edge (Figs. 11a and b). In the maxillary arch, because of the more complex anatomy and limited visibility, we suggest the use of a pressure-formed soft sheet4 as a reference guide. This sheet does not hold the brackets. Bracket inclinations can be indicated on the tray by marking the long axes of the teeth. This system will allow brackets to be positioned at the correct height, thus avoiding occlusal interferences from the overbite (Figs. 12a and b).

4 Copyplast, Schue-Dental, Iserlohn, Germany.
Main characteristics of the lingual archwires

The wires normally used in combination with the 2D brackets are preformed Titanol lingual archwires in 3 classic shapes (small, medium, large; with diameters of .012", .014", and .016") (Fig. 13). These archwires are precurved from canine to canine, both for the maxillary and mandibular arch, and allow a precise insertion of a 1st-order bend between canine and first premolar in order to produce the typical mushroom arch configuration (Fujita, 1979). We have developed a method for adding simple 1st or 2nd order bends to the preformed archwire by overbending the wire with either 3-pronge or bird-beak pliers, while it is in its martensitic (cold) phase. If the wire is then gently heated with a flame (up to approximately 60–70 °C), it will regain its austenitic phase, and the effective amount of bending can be checked (Figs. 14a and b). This is a very easy clinical procedure that requires only a few minutes of chair working time.

The use of Titanol archwires enables the clinician to produce low levels of applied force and to achieve a more consistent tooth movement during the first phase of treatment (leveling and aligning), because those wires have a wide range of deactivation, thus significantly reducing the number of appointments and reactivations.

Figs. 11a and b Marking the vertical bracket position in the mandibular arch with a placement gauge (a) and subsequent direct bonding (b).

Figs. 12a and b Bonding in the maxillary arch with the use of a vacuum-formed soft sheet as a reference guide on plaster model (a) and in the mouth (b).
Clinical Applications

The 2D lingual brackets can be effectively used for:
- post-treatment retention,
- closure of minor spaces and diastemata (Fig. 15a to k),
- limited correction of deep bites (Figs. 16a to f),
- correction of simple tooth malalignments and mild crowding, particularly in the mandibular arch (Figs. 17a and b),
- correction of anterior cross bites (Figs. 18a to e, 19a to k).
Figs. 1a to k. Adult presenting with an anterior diastema, increased overjet and overbite plus cross bite of the maxillary right canine. Pre-treatment photographs (a to g) and post-treatment photographs (h to k).
Figs. 1a to f Adult presenting with deep overbite. Pre-treatment photographs (a to d) and post-treatment photographs (e and f).
Figs. 17a and b Adult presenting with mandibular crowding. Pre-treatment photographs (a) and situation at the end of treatment (b).

Figs. 18a to e Adult presenting with anterior cross bite and diastema. Pre- (a to c) and post-treatment photographs (d and e).
Figs. 1a to h: Adult with anterior cross bite. Pre-treatment photographs (a to d) and post-treatment photographs (e to h).
CONCLUSIONS

Lingual orthodontics demands special biomechanical expertise and technical skills, such as indirect bracket bonding and customized archwire bending. However, bidimensional lingual brackets are a valid alternative to conventional lingual brackets in adult cases that do not require 3rd order tooth movements. Indications for using those brackets are post-treatment retention, closure of minor spaces, limited correction of deep bite, correction of mild crowding, particularly in the mandibular arch, and correction of anterior cross bite. Once a clinician's familiarity with the lingual technique described above has improved, he or she will be able to treat more difficult cases with more sophisticated 3D brackets and indirect bonding.

REFERENCES